Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta-cell line.

نویسندگان

  • H Wang
  • P Maechler
  • K A Hagenfeldt
  • C B Wollheim
چکیده

Mutations in the hepatocyte nuclear factor-1alpha (HNF-1alpha) have been linked to subtype 3 of maturity-onset diabetes of the young (MODY3), which is characterized by a primary defect in insulin secretion. The role of HNF-1alpha in the regulation of pancreatic beta-cell function was investigated. Gene manipulation allowed graded overexpression of HNF-1alpha and controlled dominant-negative suppression of HNF-1alpha function in insulinoma INS-1 cells. We show that HNF-1alpha is essential for insulin gene transcription, as demonstrated by a pronounced decrease in insulin mRNA expression and in insulin promoter activity under dominant-negative conditions. The expression of genes involved in glucose transport and metabolism including glucose transporter-2 and L-type pyruvate kinase is also regulated by HNF-1alpha. Loss of HNF-1alpha function leads to severe defects in insulin secretory responses to glucose and leucine, resulting from impaired glucose utilization and mitochondrial oxidation. The nutrient-evoked ATP production and subsequent changes in plasma membrane potential and intracellular Ca2+ were diminished by suppression of HNF-1alpha function. These results suggest that HNF-1alpha function is essential for maintaining insulin storage and nutrient-evoked release. The defective mitochondrial oxidation of metabolic substrates causes impaired insulin secretion, indicating a molecular basis for the diabetic phenotype of MODY3 patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental models of transcription factor-associated maturity-onset diabetes of the young.

Six monogenic forms of maturity-onset diabetes of the young (MODY) have been identified to date. Except for MODY2 (glucokinase), all other MODY subtypes have been linked to transcription factors. We have established a MODY3 transgenic model through the beta-cell-targeted expression of dominant-negative HNF-1alpha either constitutively (rat insulin II promoter) or conditionally (Tet-On system). ...

متن کامل

Loss of HNF-1alpha function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism.

Mutations in hepatocyte nuclear factor 1alpha (HNF-1alpha) lead to maturity-onset diabetes of the young type 3 as a result of impaired insulin secretory response in pancreatic beta-cells. The expression of 50 genes essential for normal beta-cell function was studied to better define the molecular mechanism underlying the insulin secretion defect in Hnf-1alpha(-/-) mice. We found decreased stead...

متن کامل

The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation.

Defective glucose-stimulated insulin secretion is the main cause of hyperglycemia in type 2 diabetes mellitus. Mutations in HNF-1alpha cause a monogenic form of type 2 diabetes, maturity-onset diabetes of the young (MODY), characterized by impaired insulin secretion. Here we report that collectrin, a recently cloned kidney-specific gene of unknown function, is a target of HNF-1alpha in pancreat...

متن کامل

The effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line

Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...

متن کامل

Beta-cell expression of a dominant-negative HNF-1alpha compromises the ability of inhibition of dipeptidyl peptidase-4 to elicit a long-term augmentation of insulin secretion in mice.

Glucagon-like peptide-1 (GLP-1) has long-term effects on pancreatic islets by increasing the insulin secretory capacity and beta cell mass. The islet effects of GLP-1 are glucose dependent and therefore tied to glucose sensing and metabolism. We examined whether prevention of inactivation of GLP-1 by inhibiting dipeptidyl peptidase-4 (DPP-4) is sufficient to promote long-term augmentation of gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 22  شماره 

صفحات  -

تاریخ انتشار 1998